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Fig. 1. Le�: We i) fit a parametric implicit surface template to an input meshM1 (Gear+Sliders), and ii) deform the mesh by editing the template parameters

(User+Sliders). The first two rows show deformations of M1 using two di�erent templates TA and TB. In the 3A3 row, template TB is fi�ed to an input noisy

scan M2 to guide M1’s deformation: We retarget mesh M1 onto mesh M2 while following the semantics (encoded symmetries, bounds, respective alignment of

features, ...) carried by TB (TB1 ↦→ TB3). Right: Our method allows using common implicit template models enabling non-trivial deformations while being

controllable with a small number of intuitive parameters that can generate rich variations within a shape category.

Wepropose a semantic shape editingmethod to edit 3D trianglemeshes using

parametric implicit surface templates, bene�ting from the many advantages

o�ered by analytical implicit representations, such as in�nite resolution

and boolean or blending operations. We propose �rst a template �tting

method to optimize its parameters to best capture the input mesh. For

subsequent template edits, our novel mesh deformation method allows

tracking the template’s 0-set even when featuring anisotropic stretch and/or

local volume change. We make few assumptions on the template implicit

�elds and only strictly require continuity. We demonstrate applications to

interactive semantic shape editing and semantic mesh retargeting.
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1 INTRODUCTION

Implicit Modeling has been extensively researched and used by 3D

artists for decades. In this context, an artist models a volumetric

�eld 5Θ : R3 → R parameterized by Θ, and is exposed with a 3D

surface S given by its 0-set: S := 5 −1
Θ
({0}).

Famous examples includemetaballs [Blinn 1982; Fujita et al. 1990],

convolution skeletons [Suárez et al. 2019; Zanni et al. 2012, 2013, 2015,

2011], and enriched sketches [Sugihara et al. 2008;Wyvill et al. 2005].

They are part of most modeling software (e.g., Blender with di�er-

entiable graph-based solutions [BlenderImpl], ZBrush’s [ZSpheres],

Pixar’s [Renderman]), and are the cornerstone of many recent mod-

eling tools [Clavicula; MagicaCSG; Womp]. Implicit representations

o�er many bene�ts for 3D modeling:

• S, the 0-set of 5Θ can be in�nitely smooth for smooth 5Θ –

which is almost unique in Computer Graphics;

• The artist can ignore polygonal surface quality during mod-

eling, as S is extracted as a post-process;

• The interior and exterior of S are simply de�ned as 5 −1
Θ
(R−)

and 5 −1
Θ
(R+) respectively, while those are typically di�cult

to compute for polygonal surfaces [Jacobson et al. 2013];

• Boolean operators (union, intersection, subtraction), highly

challenging for meshed representations yet extremely useful
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Our Implicits Corresponding SDF Absolute Difference

Fig. 2. Our implicits, like most ones designed by CG artists, are not SDFs.

Simple operations, such as intersection using a max operator, indeed break

the SDF assumption. Note the discontinuities in the spatial gradient of our

implicit field.

for quickmodeling and prototyping, are trivially implemented

as min |max operators: 5 �∪� := min(5 �, 5 �);
• As S is the sole object of interest, the de�nition of 5Θ away

fromS is in general of little to no concern to the artist, permit-

ting �exible de�nitions that largely deviate from restrictive

Signed Distance Fields (SDFs) – see Fig. 2.

Numerous works have tackled the design of parametric blend-

ing operators [Angles et al. 2017; Bernhardt et al. 2010; Gourmel

et al. 2013], to allow for smooth unions for example (as opposed to

unions, which lead to sharp creases at the exact junction between

shapes being blended). Complementary to this, warping operators

have allowed for the intuitive deformation and editing of implicit

surfaces [Kleck 1989; Pasko et al. 2001; Zanni et al. 2011].

The extensive research and remarkable versatility of implicit

surface representations have fostered creativity for years, and artists

in the demoscene community (e.g., ShaderToy [Jeremias and Quilez

2013, 2014; Quilez and Jeremias 2024]) have used them intensively

to design large scenes (sometimes in�nite, de�ned as procedural

fractals) that can be synthesized on-demand by extremely compact

programs [Quilez 2008]. Due to their parametric nature, dynamic,

time-varying implicit surfaces are also ubiquitous, and many works

have focused on their e�cient tracking/rendering [Jazar and Kry

2023] or their use for deforming 3D shapes [Vaillant et al. 2013].

Our work focuses on the latter problem: we study how parametric

implicit surfaces can be used to deform 3D surfaces. In particular,

we aim at enriching input raw detailed triangle meshes with se-

mantic deformation handles described by parametric implicits (see

Fig. 1, right), enabling mesh editing in a novel manner and allowing

reusability of parametric implicits for the deformation of entire col-

lections of objects. To this end, we introduce two complementary

operators that constitute our two main technical contributions:

(i) Fitting: Our simple and robust template �tting operator al-

lows �nding adequate parameters for the 0-set of the input

template to best match an input polygonal surface.

(ii) Deformation: Once the template is �t to the input mesh, our

deformation operator allows tracking the template’s 0-set as

its semantic parameters are edited by a user. To cope with

the severely ill-posed nature of this operation, we design a

speci�c regularization energy adapted to the nature of com-

mon implicit templates, that typically allow for anisotropic

stretch and/or local volume change.

To reach broad compatibility, we make little assumptions on our

input implicit templates, and merely require those to be:

• continuous 3D �elds: our templates representing 3D surfaces

compatible with the objects we aim to deform, no Heaviside

function nor discontinuous procedural noises are handled.

• continuous w.r.t. Θ: aiming at continuous deformations, we

do not handle discrete parameters (e.g., grid instancing).

• reasonably well-behaved around their 0-set.

We do not require our implicits to be di�erentiable everywhere nor

be SDFs, which would otherwise highly limit the usability of our

technique. For instance, common operations on SDFs like union

(min) and substraction/intersection (max) do not generally produce

SDFs (see Fig. 2) and �xing the resulting �eld is an open prob-

lem [Marschner et al. 2023]. Further, even if our implicits are mostly

built as compositions and blending of simple parametric primitives –

like most ones found in the demoscene community or typically used

by modelers, we do not rely on per-primitive �elds (e.g., like [Vail-

lant et al. 2013]), nor are we enriching our programs to track point

deformations (e.g., like [Michel and Boubekeur 2021]).

2 RELATED WORK

We focus in this section on shape editing methods, and refer the

interested reader to surveys on implicit surface modeling [O’Brien

and Yoo 2005], rendering [Knoll 2008] and meshing [De Araújo

et al. 2015]. In addition, Yuan et al. [2021] survey shape editing from

traditional to the more recent neural editing approaches.

Template-based shape editing. Semantic shape templates [Gadelha

et al. 2020; Yumer et al. 2015] restrict shape edits to a semantically

meaningful space. Several approaches, e.g. Liu et al. [2021], use neu-

ral representations capturing semantic notions of everyday objects.

Jakab et al. [2020] extract meaningful point handles for deformation

while Shechter et al. [2022] learn inferred displacements by such

handles. Primitive-�tting methods (e.g. bounding boxes [Mo et al.

2020; Wei et al. 2020] or 3D Gaussians [Genova et al. 2019]) o�er

light-weight abstractions and part-wise semantic control.

Implicit shape templates. Several approaches estimate the seman-

tic parameters of a procedurally-modeled template or a latent se-

mantic representation using neural networks [Deng et al. 2021; Hao

et al. 2020; Hertz et al. 2022; Liu et al. 2023; Pearl et al. 2022; Zheng

et al. 2021]. Approaches using a neural implicit representation can

either have parameters learned by training over a dataset or esti-

mated on a per-shape basis [Yifan et al. 2021]. While interactive

shape editing is possible through quick forward-passes, issues re-

sulting from out of training-distribution inputs and generalization

need to be handled. Hertz et al. [2022] perform a shape inversion

optimization during inference for a better latent �t in addition to an

interactive editing speed. Those last approaches re-generate new

shapes, which has the drawback of losing the input’s connectivity.

Our approach is connectivity-preserving, and only uses the implicit

template to track deformations to apply to the input.
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Deformation transfer. Shape editing is closely related to detail-
preserving deformation transfer. Classical methods include Porumbescu
et al. [2005] for detail transfer, Dekkers and Kobbelt [2014] and
Rohmer et al. [2015] for detail generation/deletion, and Botsch et al.
[2006] for detail-preserving surface editing, while neural represen-
tations have been recently developed for the same tasks [Aigerman
et al. 2022; Chen et al. 2021; Morreale et al. 2022; Yifan et al. 2020,
2021]. Yin et al. [2021] and Ma et al. [2014] propose shape analo-
gies methods by learning the deformation from a source shape to
a target shape, and allow replicating the learned deformations to
new shapes; Sung et al. [2020] project deformation handle edits to
a learned semantics-preserving shape space; Maesumi et al. [2023]
build deformation �elds from point clouds generated using a 2D
exploration space. In our work, we focus on driving deformation
transfer (mesh retargeting) with our parametric implicit templates,
which capture the semantics of the intended transfer.

3 OVERVIEW

Our method takes as input i) a meshM within a speci�c object cat-
egory c, and ii) an implicit template Tc represented by a parametric
implicit function 5Θ : R

3 → R, Θ de�ning its parameters.
We manipulateM using Tc in two stages:

(i) Fitting (Sec. 4): Our �tting process computes parameters Θ(

for the template to best conform toM (in the sense thatM
and S := 5 −1

Θ(
({0}) are colocated).M is then encoded using

local signatures in 5Θ(
found at its vertices.

(ii) Deformation (Sec. 5): Given target Θ) (e.g., from a user-
edit), we deformM by tracking its implicit signatures as Θ( is
advected towards Θ) while minimizing a global deformation
energy, ensuring quality preservation.

Implicit Template. Tc has minimal requirements as de�ned in
Section 1. We designed our templates using an in-house tool, similar
to [BlenderImpl]. Our data is identical in nature to the ones produced
by popular software ([Clavicula; MagicaCSG; Womp]). Figure 1
(right) shows two examples of our templates, their interpretable
structural parameters and the various implicit function instances
of the same template with di�erent parameters. Section 1 of the
supplementary document details our implicit templates, their design
logic and the way parameters interact with them.

4 IMPLICIT TEMPLATE FITTING

To �t a parametric implicit template to an input meshM, we design
a simple iterative method inspired from Iterative Closest Point (ICP)
methods. Consider surface samples P( evenly distributed on M
and volume samples P+ randomly distributed away fromM. We
optimize the parameters Θ to minimize the following energy:

Effit :=

∑

?∈P(
|5Θ (?) |2 + U

∑

?∈P+
Ff (?) |5Θ (?) − 3 (?) |2, (1)

3 (?) denoting the approximate signed distance from ? toM (we use
fast pseudo-normal test [Bærentzen and Aanæs 2005]), andFf (?)
being a con�dence weight quickly decreasing with increasing 3 (?).

We minimize Eq. (1) with L-BFGS-B using auto-di�erentiation to
compute the gradient ∇Θ (5Θ).

Optimizing 5Θ to best �tM only (i.e., setting U = 0 in Eq. (1))
is not su�cient, because templates initialized far o� the targetM
are not attracted to it with such a simple local approach, as ∇Θ (5Θ)
might indicate wrong directions (or be null) in those situations (see
Fig. 2 illustrating our implicits far from their 0-set). We therefore
use the sparse volume samples P+ to mainly repulse the 0-set away
from them and ensure non-zero gradients in such cases.
Note that, as we cannot ensure that 5Θ reproduces an SDF be-

havior (see Fig. 2), we mildly penalize deviation from those targets
P+ in Efit, which is su�cient to guide the optimization during
the early iterations without compromising the �nal result. In our
implementation, we de�ne those con�dence weights as

Ff (?) := exp
(

−3 (?)2/f2
)

. (2)

where f is the standard deviation hyperparameter. We adopt a
coarse to �ne approach by running the optimization four times
with decreasing f values starting from the bounding box diagonal
(almost uniform repulsion) to 3% of it (almost no repulsion).

Figure 3 shows examples of parametric shapes �tting (input)
target meshes. The template shapes are shown both in their initial
con�guration, and after being �tted to an input mesh.

To illustrate the robustness of our method, we conduct an ablation
study, and compare in Fig. 3 our weighting strategy with:

• no repulsion: setting U = 0;
• uniform repulsion: setting U = 1 andF (?) = 1 ∀? ∈ P+ .

In the �rst case, the template might not converge towards the target
surface, due to null gradients far o� the global minimizer of Efit. In
the second case, the �nal template is slightly o� the target surface,
since the assumption that it follows an SDF everywhere is not true.

To further demonstrate the robustness of our approach on severely
damaged implicits, we show results of our strategy for modulated

Target

shape

No

repulsion

Uniform

repulsion
Initial Weighted repulsion

(Ours)

N=20

N=14

N=11

N=22

Fig. 3. Fi�ing parametric implicit templates tomeshes. N is the number

of (scalar) template parameters. When using only surface samples (4Cℎ col.),

gradients far o� the isosurface fail to bring it close to the target shape (blue).

With uniform weighting (5Cℎ col.), the fit is close to the target but slightly

o� as volume samples do not yield true sdf values.
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targets in Fig. 4 of the supp. and show that the optimized implicit
surfaces still overall �t the target surfaces, indicating that the use
of volume samples is indeed harmless for the �nal �tting.

5 IMPLICIT-DRIVEN MESH DEFORMATION

We propose a novel algorithm to compute the deformation map
q (the target mesh M′ = q (M)) given the source (input) mesh
M, associated source implicit representation 5Θ (�t toM using the
method presented in Sec. 4), and target parameters Θ′ (typically
corresponding to a user edit). Note that target and source meshes
have a one-to-one correspondence, and we are merely looking for a
deformation map E ′ = q (E) for every mesh vertex E .
We cast our ill-posed problem as an energy minimization, and

introduce a novel mesh deformation energy:

Edef (M′) := Etracking (M′) + Ereg (M′), (3)

both tracking Etracking (M′) and regularization Ereg (M′) ener-
gies speci�cally designed for our problem. Since both the terms are
highly non-linear, we adopt an iterative optimization scheme.

For the rest of this section, E denotes an input mesh vertex, and E ′

its unknown transformation under the corresponding template edit
Θ ↦→ Θ

′. (·)′ denotes target quantities. We further denote E: its 3D
position at step/iteration : , and 3E its displacement update at step
:+1 (E:+1 = E:+3E ), converging to E ′ = lim:→∞ (E: ) = argmin Edef.
We detail our energy terms and their associated one-step descent
constraint in Sec. 5.1 and 5.2, under the assumption of continuous
smooth edit stepsΘ ↦→ Θ

′ in the parameter space, with the complete
iterative algorithm in Sec. 5.3.
We take inspiration from well-established ARAP deformations

[Sorkine and Alexa 2007], that advocate the use of auxiliary local
transformation maps 'E associated with each vertex E . The main
(geometric) principle of those works is to minimize a non-linear
deformation energy of the form:

Earap =
∑

Ē∈handles
∥E ′−Ē ∥2 +

∑

E∈+

∑

(D,F ) ∈� (E)
ℎDF ∥'E (F−D) − (F ′−D′)∥2,

that enforces the rigid transformation of E ’s edge-set � (E) by a
rotation 'E ∈ R3×3 while enforcing handle constraints E ↦→ Ē ,
{ℎDF } being surface discretization weights. � (E) can simply be the
E ’s adjacent edges, but larger/di�erent neighborhoods (e.g., a one-
ring edge-set) can be considered. 'E is typically initialized to � and
constrained to be 3D rotations, and {E ′, 'E} are optimized iteratively
using a standard local/global solver minimizing e�ciently Earap,
which is the main take-away we retain from those works.

5.1 Tracking energy

5.1.1 Implicit signatures. Many mesh deformation techniques in-
volve a user interacting with a few handle vertices to specify 3D
positions for them and the rest of the mesh is optimized for a shape
regularization energy ensuring well-behaved deformations. In our
context, we rather bind the source meshM to the source implicit
5Θ. We do this by preserving the following implicit signatures:

order 0: The value of 5Θ′ at vertex E
′
= q (E) should equal the value

of 5Θ at its source location E ∈ M, i.e.

5Θ′ (E ′) = 5Θ (E) =: 5E (4)

order 1: The gradient of 5Θ′ at E
′ should equal the re-aligned gradient

of 5Θ at E ∈ M (with E ’s local map �E ∈ R3×3, Sec. 5.2), i.e.
∇5Θ′ (E ′) = �E · ∇5Θ (E) =: �E · 6E (5)

When �E is not a rotation, we re-normalize the right hand side
in Eq. 5 to match the norm of ∇5Θ′ (E ′). These (0th, 1st)-order cou-
pling conditions enforced overM "bind" the mesh geometry to the
underlying implicit representation. Our tracking energy is:

Etracking (M′) =
∑

E

|5Θ′ (E ′) − 5E |2 + ∥∇5Θ′ (E ′) − �E · 6E ∥2 (6)

5.1.2 Mesh updates. We translate those conditions to our update
scheme E:+1 = E: + 3E , by writing the explicit Taylor expansion of
our target �eld 5Θ′ and its gradient ∇5Θ′ at current location E: as
{

5Θ′ (E:+1) = 5Θ′ (E: ) + ∇5Θ′ (E: ))· 3E +
3)E·� 5Θ′ (E: )·3E

2 + O(∥3E ∥3)
∇5Θ′ (E:+1) = ∇5Θ′ (E: ) + � 5Θ′ (E: ) · 3E + O(∥3E ∥2)

Enforcing E ’s target implicit signature at E:+1 (i.e., 5Θ′ (E:+1) = 5E ,
∇5Θ′ (E:+1) = �E · 6E ) and discarding O(∥3E ∥3) terms gives

{

5E = 5Θ′ (E: ) + ∇5Θ′ (E: )) · 3E +
3)E·� 5Θ′ (E: ) ·3E

2

�E · 6E = ∇5Θ′ (E: ) + � 5Θ′ (E: ) · 3E
(7)

Eliminating � 5Θ′ gives the following tracking linear constraint
on our vertex update 3E :

(

∇5Θ′ (E: ) + �E · 6E
2

))

· 3E = 5E − 5Θ′ (E: ) ∀E . (8)

5.1.3 Analysis and implementation notes. Although the updates
use only up-to �rst order derivatives in its �nal formulation, the
resulting error terms are of order 3, as we implicitly use the second
order information of the deformation � 5Θ′ in our construction
(Eq. (7)). This construction leads to a modi�ed gradient descent
update (Eq. (8)) with the standard gradient ∇5Θ′ blended with the
re-aligned source gradient signature �E · 6E .

In practice we approximate a reliable spatial gradient ∇5 using a
�nite di�erences scheme rather than evaluating it explicitly – which
would only work for implicits that are di�erentiable everywhere.
We notice no signi�cant di�erence in results using automatic dif-
ferentiation instead. Our update step constraint (Eq. (8)) does not
strictly correspond to the precise least-squares minimization of Eq. 6,
for the reason that the 0Cℎ and 1BC order constraints are not evenly
balanced in Eq. (7). Our simpler update step avoids however the
�nite-di�erence approximation of the Hessian � 5Θ′ , which we do
both for simplicity and robustness reasons, and it corresponds to
the least-squares optimization under in�nitesimal updates 3E .

5.2 Regularization energy

Tracking our implicit signatures leads to under-constrained defor-
mations as the updates are insensitive to the vertices sliding on the
implicit’s iso-surfaces (especially in �at regions, see Fig. 4), warrant-
ing the need for regularization. We specialize our regularization
energy to deformations containing large anisotropic stretch. In-
spired from ARAP deformations, we weakly enforce each vertex E ’
neighborhood to be rigidly transformed by a single map �E ∈ R3×3.

4
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Contrary to ARAP, we do not constrain those to be rotations, as we
target stretched deformations. In our case, we enforce local normal
isometries while controlling the stretch in the tangent plane.
We further study the use of an optional anisotropic smoothing

term, weakly enforcing continuous consistent regions (i.e., not sep-
arated by sharp features) to remain uniformly deformed if needed.
Our regularization energy is de�ned as:

Ereg (M′) =
∑

E∈+

∑

(D,F ) ∈� (E)
2EDF ∥ �E · (F − D) − (F ′ − D′)∥2

+ UBESmooth ({�E}) (9)

where 2EDF are the cotangent weights and �E belongs to a class of
local transformations enforcing isometry in the normal direction.

Global step. Given estimated {�:−1E } from step :−1, the following
linear constraint on the vertex update at step : is enforced:

3F − 3D = �:−1E · (F − D) − (F: − D: ) ∀E,∀(D,F) ∈ � (E). (10)

Local step. Given source vertex positions {E} and current vertex
positions {E: } at step : , we estimate the local maps {�:E } by enforc-
ing those to map the source normal =E precisely to the deformed
normal =:E , while best aligning edge-set � (E) in the corresponding
tangent spaces. With %= := � − = · =) , we con�ne the maps {�:E } to:

�:E = =:E · =E) + %=:E · �E · %=E
(11)

In the absence of ESmooth, substituting Eq. (11) in Eq. (9) gives

�:E = argmin
�

∑

(D,F ) ∈� (E)
2EDF ∥ �%=E

· (F − D) − %=:E · (F
: − D: )∥2 (12)

�:E can be computed in closed-form as

�:E = =:E · =E)
︸   ︷︷   ︸

rank 1

+ %=:E · �
:
E ·

(

%=E
· �E

)†

︸                     ︷︷                     ︸

complementary, rank 2

(13)

with �E (resp. �:E ) the 3 ×< matrix whose columns are given by√
2DEF (F −D) (resp.

√
2DEF (F: −D: )), and"† denoting the pseudo-

inverse of" . Note that Eq. (13) is symmetric, and that the inverse
map � ′E is obtained by switching (=:E , �:E ) with (=E, �E).

Anisotropic smoothing. We optionally perform a smoothing step
of our local maps {�E}. Regularizing those maps was �rst proven
(to the best of our knowledge) to help preserving large structures
in the context of ARAP optimizations in [Levi and Gotsman 2014].
Inspired by this work, we design our smoothing operator by

• enforcing smoothing on {�:E } after aligning adjacent maps
through a trivial connection, and
• using geometry-aware blending weightsF8 9 that preserve the
structure de�ned by sharp features.

The optional smoothing energy is de�ned over all edges � as:

Esmooth =

∑

(8, 9 ) ∈�
F8 9 ∥ �:8 −) (�

:
9 , 9 ↦→ 8)∥2� (14)

with the trivial connection operator [Crane et al. 2010] transporting
maps from vertex 9 to vertex 8 given by

) (� 9 , 9 ↦→ 8) = '(=:9 ↦→ =:8 )
) � 9'(= 9 ↦→ =8 ) (15)

where '(= 9 ↦→ =8 ) is the shortest rotation mapping = 9 to =8 . Parallel
to Eq. (12), we can show that in presence of Esmooth,

�:8 = argmin
�

∑

(D,F ) ∈� (8 )
28DF ∥ � · %=8 · (F − D) − %=:

8

· (F: − D: )∥2

+
∑

9∈N(8 )
F8 9 ∥ � · %=8 − %=:

8

·) (�:9 , 9 ↦→ 8) · %=8 ∥2 (16)

While we implemented a vectorized least-squares solve to com-
pute �:8 ,∀: , we observed in practice that using neighboring maps

�:9 from the previous step lets us compute �:8 in parallel ∀8 without
compromising the solution quality (given we already use an iterative
approach). With ):

9 = ) (�:9 , 9 ↦→ 8), we obtain ∀8:

�:8 = =:8 · =8
) (17)

+ %=:
8

·
[

�:8 . . .
√
F8 9 ·):

9 · %=8
︸            ︷︷            ︸

∀ 9∈N(8 )

. . .
] (

%=8 ·
[

�8 . . .
√
F8 9 · �

︸   ︷︷   ︸

∀ 9∈N(8 )

. . .
] )†

with �8 , �
:
8 de�ned as in Eq. (13), N(8) the neighboring vertices of

vertex 8 , and � the 3 × 3 identity matrix. We de�ne our geometry-

aware weights using distance functions common in mesh segmen-
tation [Yan et al. 2006], for �at and spherical regions:

F8 9 = exp
(

−3 ( 9, proxy 8)2/f2B
)

, (18)

fB ≥ 0 controlling the process.

5.3 Progressive tracking

With both energy terms in account, we optimize Eq. (3) iteratively,
alternating global optimization of 3 = {3E} updates with local esti-
mation of the auxiliary transformation matrices {�E}.
For a speci�c edit from the source (input) parameters Θ( ↦→

Θ) , we perform the associated mesh deformation by (optionally)
splitting the edit into smaller sub-edits Θ( = Θ0 ↦→ Θ1 ↦→ · · · ↦→
Θ) . This is motivated in Section 3 of the supp. by the need for
in�nitesimal updates as explained in Section 5.1.3. Algorithm 1
summarizes our progressive tracking. Note that we typically use a
small number of iterations :<0G for the (intermediate) subedit steps,
while ending with a larger number of :<0G iterations (especially if
anisotropic smoothing is enforced) for interactive speeds.

ALGORITHM 1: Our Implicit-driven mesh deformation

// Input: source meshM, source/target implicit parameters Θ/Θ′

// Output: deformed meshM′
for subedit step Θ ↦→ Θ

′ do
for : = 0 ↦→ :<0G do

Gather Eqs. (8),(10) and build system� ·3 = 1, for 3 = {3E }
Solve for 3E = argmin

3
∥� · 3 − 1 ∥2

Update mesh: E ← E + 3E for all E
Update local maps { �E } (Eq. (13)/ (17))

5.4 Ablation and experimental validation

We validate our choices for the deformation energy incrementally.
Fig. 4 shows a couch mesh �tted with a couch template subjected
to a large edit in its length . The edited mesh with no EReg shows

5
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No

ARAP

Input

Mesh

Θ
S

Θ
T

Edited Mesh

Ours

Fig. 4. In contrast to ARAP, we allow for anisotropic stretch to the desirable

extent.

Without

Uniform

Geometry-

aware
0.95

2.5

Fig. 5. 1BC principal stretch factor of the deformation for an edit doubling the

couch length. Our Esmooth gives control to the user to preserve consistent

regions, while smoothing the local transformations within them (see insets).

Region boundaries (see the back and side) are also be�er demarcated.

the need for regularization since the �tting energy alone is not
su�cient. While ARAP [Sorkine and Alexa 2007] provides some
regularization, it does not permit deformation involving a large
stretch. Our approach provides the desired stretch while preserving
features from the input mesh.We show the e�ect of geometry-aware
weights in the smoothing energy in Fig. 5. The smoothing energy
can be turned on when the user needs smooth stretch in continuous
consistent regions (controlled using fB ).

6 APPLICATIONS

We demonstrate two main applications of our shape editing frame-
work: interactive semantic shape editing of input 3D shapes (Sec. 6.1).
and deformation of a source mesh tomatch the semantic structure of
a target one (Sec. 6.2). We show the robustness of our approach to
the template used, while illustrating how di�erent templates incur
di�erent types of deformations.
Sec. 5 of the supp. gives details on our implementation and per-

formance insights. In addition to all the results shown in �gures
in the main and supplementary documents, we provide an HTML
interface (in supp.) to browse all results at high resolution.

Input

Mesh
Θ

S Θ
T

Edited

Mesh

S
im

p
le
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o
x 

T
em

p
la

te
s

Fig. 6. Applying semantic edits from implicit templates (second column)

onto 3D meshes (le�). Same colors of templates denote same template used.

Our implicit templates allow complex deformation like smooth morphing

or inflating. The last three rows show edits performed using simple box

templates. Fig. 7 shows more results of semantic edits.
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Fig. 7. Applying semantic edits from implicit templates (second column)

onto 3D meshes (le�). Same colors of templates denote same template used.

The last two rows show edits performed using simple box templates.

6.1 Interactive shape editing

Our shape parameters capture the structural semantics of objects
and give a sparse set of shape handles to perform intuitive edits.
Our implementation demonstrates shape editing with interactive
feedback on a consumer computer, as shown in the supp. video.
We illustrate shape editing by varying the parameters for shape
categories like couch, table, vase, mug, car and airplane. We show
that simpler box templates also allow performing useful edits, while
being very easy to create and agnostic to the shape category.

6.1.1 Semantic templates. Figs. 6 and 7 show semantic edits of
di�erent natures and scales applied to shapes of multiple categories
(speci�ed by the user). The same template is used for di�erent inputs
showing the versatility of our proposed approach and its generality
to inputs of di�erent structures and topologies, as also seen in Fig. 12.
By design, our framework supports multiple edits at once as it only
relies on the edited template. Implicit function templates enable
complex editing operations, such as morphing between primitive
shapes or squeeze and in�ation, visible on the vase examples. Fig. 8
of the supp. shows additional results of semantic edits.

Input Edited

Fig. 8. Failure case: our approach may struggle to make large edits localized

to a tiny region.

Fig. 8 shows a failure case of our deformation method. Though
we focus on connectivity-preservation deformations, further im-
provement to our method could be achieved through promoting
sparse stretch relaxation singularities and remeshing, as well as de-
tail synthesis/removal when necessary [Dekkers and Kobbelt 2014;
Rohmer et al. 2015].

6.1.2 Simple templates. The last three rows of Fig. 6 show easy
access to quick complex deformations (like twisting) using very
simple templates. Fitting simple box templates di�erently to the
same inputs shows ways to deform parts of the inputs separately in
a desired way. Fig. 9 of the supp. shows additional results.

6.2 Semantic mesh retargeting

We leverage our template-based deformation to warp a source shape
into the structure of a target. We �t templates of a common category
to the source and target meshes. This enables moving from the
source to the target templates through a continuous parametric
space. Since our approach enables tracking edits in this space, we
can deform the source mesh to be edited to conform to the target
template resulting in mesh retargeting. In addition, interpolating
parameter values between templates �t to di�erent shapes allows
interpolating the structure of the two meshes.
As shown in Fig. 9, this process allows preserving the style of a

given shape while warping it into a di�erent structure. For instance,
we show the deformation of an input couch mesh to match the
structure of a noisy scan. This provides an easy way to replace dirty
meshes from a single view depth map with complete ones. Fig. 10
of the supp. shows additional results.

6.3 Other parametric templates

Fig. 10 shows deformation of human meshes �t with SMPL tem-
plates [Loper et al. 2015] that provide a parametric model of body
pose and shape. While our approach focuses on tracking implicit
templates, we can easily deploy other existing specialized templates
(like SMPL) by simply computing the SDF from them. Given the
template’s ability to parametrically vary both body pose and shape
(Fig. 10 rows 1 & 2), our approach enables easy deformation transfer
to textured human inputs even from noisy scans.

7 COMPARISONS

We evaluate our deformation scheme against Wei et al. [2020] (edits
meshes using parametric templates), and Yifan et al. [2020](mesh
retargeting). We also compare to an implicit shape-editing approach
Spaghetti [Hertz et al. 2022]. In addition to the ones presented here,
Figs. 12, 13 and 14 of the suppl. demonstrate more results. Sec. 7
of the supp. displays results of a perceptual study showing user
preference of our results compared to these three related works.

7
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Source Mesh Neural Cages OursTarget Mesh

Fig. 9. Detail-preserving mesh retargeting. The target mesh in the second

row is a single-view scanned couch. The third column (green) shows the

result of Neural Cages [Yifan et al. 2020] on the same source and target

meshes.

7.1 Mesh Deformation based editing

7.1.1 Comparison with Wei et al. [2020]. This work deforms a given
shape using non-implicit templates made of di�erent types of prim-
itives. It uses a simple deformation scheme based on weighted av-
erage of displaced control points. In contrast, our regularization
energy was speci�cally designed to preserve local orientation of
details. It leverages a neural network to estimate the parameters of
the template for a given input, which can limit its representativeness
to the training data. Code for this method is not available but the
authors kindly provided result meshes and corresponding edits, that
we reproduce in our setup in Fig. 11. Our approach preserves details
better and displays greater �delity to the template.

7.1.2 Comparison with Neural Cages [Yifan et al. 2020]. We com-
pare our mesh retargeting application to Neural Cages which uses a
neural cage as a low-level representation to track and deform the
input vertices using Mean Value Coordinates. In Fig. 9, we display
greater �delity to the target shape structure and preserve the source
details at the appropriate scale of the target. In addition, we do
not su�er the problem of under-performing on out-of-distribution
inputs not generalized by a learnt network. While the Neural Cages
are limited to low frequency edits, other subspaces [Wang et al.
2015] allow more localized and sharp edits.

7.2 Semantic editing using Neural Implicits

We compare our method to the implicit-based Spaghetti method
[Hertz et al. 2022], which captures semantics of objects using a neu-
ral representation and generates the shape again after editing. While
this approach su�ers from a generalization problem too, the �xed
resolution and expressiveness of the neural latent representation
can a�ect the details of the output.

Fig. 12(a) shows a comparison on chairs from the Spaghetti sam-
ples, where the method can not accurately re-generate the shape
after structural edits. In Fig. 12(b), we run the shape inversion from
Spaghetti to apply edits on new shapes. In addition to the lack of
geometric details output by Spaghetti, large scale edits such as back
tilting on couches lead to global deformation of the input and do
not preserve the locality of the edits, due to the entanglement of
features in the neural representation.

8 CONCLUSION

We presented a novel approach to �t parametric implicit templates
to input shapes, and deform them by tracking the evolving implicit
template. With the ubiquity and versatility of implicit modeling,
our minimal requirements on the template ensure ease of use. In
addition, our deformation algorithm contributes tracking implicit
signatures enabling a semantic link between the template and shape
spaces. We show compatibility with existing parametric templates
and provide a complementary approach to learning based methods
that can su�er from generalization problems.
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Fig. 10. Le�: Parametric editing of clothed human meshes (from [Vlasic

et al. 2008]) using SMPL templates. First row shows an edit to the body

pose parameters while the second row shows edits to both pose and shape

parameters. The third row shows variations of a source human mesh. Right:

Mesh retargeting to fit the pose and shape of an input target scan. This

demonstrates transferability of our approach to existing specialized tem-

plates.

Ours

Θ
S

Θ
T

Wei et al.

[2020]

Input

Mesh

Fig. 11. Our deformation formulation be�er preserves geometric details for

large edits while portraying greater fidelity to the target template. Note

that here we are using the couch template which is able to represent chairs

as well.
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Fig. 12. Comparison to the results of Spaghe�i [Hertz et al. 2022] on (a) samples from their test set: We observe our approach works robustly even for large

edits and preserves the structure be�er. (b) new samples: Spaghe�i su�ers from generalization problem on out of distribution samples.
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