
Semantic Shape Editing with Parametric Implicit Templates
Supplementary Material

1 OUR PARAMETRIC IMPLICIT TEMPLATES

While our method requires a parametric implicit template that has

minimal requirements as mentioned in the main paper, our example

templates are designed by using a few analytical primitives and their

combinations using simple mathematical operations like addition,

subtraction, minimum, maximum, vector norm etc. To ease the

design of such templates, we use a directional graph representation.

Our templates represent implicit functions 5Θ : R3 → R that map

a 3D point in space to a value. We represent the implicit function

computation as Directed Acyclic multi-graphs (DAG) G = (N ,A)

composed of nodes N and arcs A. Nodes N have inputs and out-

puts, and correspond to basic mathematical operations without

side e�ects (e.g., addition, subtraction, minimum, maximum, vec-

tor norm). Arcs A connect outputs of source nodes to inputs of

target nodes. Graphs are parameterized by a set of interpretable

parameters ? ∈ R= that control the shape. These parameters can

be bounded by ?<8= and ?<0G and are the same parameters that

the user can interact with to edit the template. Given a parameter

vector ? ∈ R= , and a 3D point G ∈ R3, the shape can be retrieved as

the roots of the implicit function 5? :

5? (G) = G(G, ?) with G ∈ R3, ? ∈ R=

s.t. ?<8= ≤ ? ≤ ?<0G .

Figure 1 shows an example of a bowl primitive comprising three

analytical primitives (two spheres and a plane). The parameters

Θ controlling the template are the two radii A1, A2 and the plane

normal ?=. The bowl region can be expressed as the intersection

of one sphere with the negative of the other subsequently sliced

into half using the cutting plane. The graph in Figure 1 shows the

computation graph to calculate the value of the implicit function

5Θ (G) for an arbitrary point in space G .

Θ

dot

Input Point

Parameters

()
norm

sub

= 0.4
= 0.5

= [0, 1, 0]

Sphere 1

norm
sub

Sphere 2

Plane

max

neg

neg

max
Θ

Fig. 1. An example of the analytical computation graph that represents an

implicit shape of a bowl.

The graph is an intermediary representation, convenient to ma-

nipulate by artists, that can be translated to GLSL code for real-time

visualization, a PyTorch graph for auto-di�erentiation, or more lan-

guages given the application. The conversion from our procedural

graphs to PyTorch code or GLSL code is straightforward as these

languages already implement all basic operations of our nodes N ,

and data types going through arcs A. Figure 2 shows examples of

translations we are able to produce from our graph representation.

끫룊
끫뢺

끫뢦끫뢺 끫룊
uniform float r1 = 0.4;
uniform float r2 = 0.5;
uniform vec3 pn = vec3(0.0, 1.0, 0.0);

float implicit_shape(vec3 x) {
float plane = dot(x, pn);
float sphere_int = length(x) – r1;
float sphere_ext = length(x) – r2;
return max(max(sphere_ext, -sphere_int), -plane);

}

r1 = torch.nn.Parameter(torch.tensor([0.4]))
r2 = torch.nn.Parameter(torch.tensor([0.5]))
pn = torch.nn.Parameter(torch.tensor([0.0, 1.0, 0.0]))

def implicit_shape(x):
plane = torch.sum(x * pn, dim=1, keepdim=True)
sphere_int = torch.linalg.norm(x, dim=1, keepdim=True) – r1
sphere_ext = torch.linalg.norm(x, dim=1, keepdim=True) – r2
return torch.max(torch.max(sphere_ext, -sphere_int), -plane)

끫뢾𝑟끫뢾𝑟끫뢺끫뢺 1

GLSL

Fig. 2. Translation of the bowl graph defined in Figure 1

1.1 Template Design

Designing such a parametric implicit template from scratch using

only basic operations is tedious and time consuming. We propose an

interactive design tool inspired from Shadertoy [Quilez and Jeremias

2013] that reduces some of this burden by showing a real time

visualization of the shape graph. We also implement a sub-graph

mechanism that allows the artist to encapsulate and reuse some

parts of the graph. By default, sub-graphs for basic primitives (e.g.,

cube, spheres, cylinders) and modi�ers (e.g., rigid transformation,

morph, twist) are available. See Figure 1 where the computation

graph features sub graphs for two spheres and a plane. Simple

templates can be authored by artists just by assembling sub-graphs

and connecting them together. Shapes used in this paper can be

authored in 10 minutes to a day by an artist with no prior experience

with our tool.

Figure 3 shows a few example templates we use in the paper

and their associated parameters. In the supplementary material, we

provide an html interface which allows manipulating our templates

and parameters from their glsl representation.

While designing shapes, artists have full control on the param-

eterization and thus can encode high-level knowledge directly in

the procedural graph by carefully choosing parameters and their

bounds. For example, symmetry constraints can be achieved by

sharing the same parameter for di�erent parts of a shape. Figure 1

(right) of the main paper shows the parameterization of two of our

procedural graphs.

1

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Fig. 3. Exemplar templates and their parameters. Our simple templates are

powerful enough to represent many di�erent instances of a shape category.

An html interface is provided as supplementarymaterial to browse templates

and edit their parameters interactively.

Target Initial (Ours)

Fig. 4. Fi�ingwithmodulated target.We run our template fi�ing scheme

while modulating SDF values of the target shape with di�erent functions.

In all cases (three last columns), the fit is imperfect but still close to the

target shape (blue) thanks to the low weighting applied to volume samples

whose implicit values are far from a true SDF.

2 FITTING TO MODULATED TARGET

To further demonstrate the robustness of our approach to severely

damaged implicits, we illustrate results of our �tting strategy for

modulated targets {ℎ(3 (?))} in place of {3 (?)} (see Fig. 4). As one

can see, while the end results di�er, the optimized implicit surfaces

still overall �t the target surfaces, indicating that the use of our

volume samples is indeed harmless for the �nal �tting. For lack of a

better guess, we still choose {3 (?)} as default targets, as artists usu-

ally reweigh their implicits in order to obtain a normalized gradient

on their 0-set (i.e., so that near S := 5 −1
Θ(

({0}), the implicits usually

approximate local SDFs). This is particularly important for rendering

reasons, as e�ciently sphere-tracing an implicit surface 5 −1
Θ(

({0})

requires knowledge of the local Lipschitz constant of 5 [Galin et al.

2020].

fΘ’ = 0 fΘ
= 0

∇fΘ

fΘ’ = 0 fΘ
= 0

(a) Large edit (b) Small edit

v v

∇fΘ’

∇fΘ

∇fΘ’

Fig. 5. An example scenario with a large edit where 5Θ (black) and 5Θ′

(grey) are implicits with their 0-level sets as solid lines. In the large edit case

(le�), the correspondence of the mesh point E with the base representation

changes from the vertical surface on its le� to the horizontal surface above

it, resulting in tracking a di�erent ∇5Θ′ .

3 MOTIVATION FOR PROGRESSIVE TRACKING

The intuition behind the need for quasi-static editing and in�nitesi-

mal updates can be explained through a simple example scenario

of a signed distance function . For a large edit such as shown in

Figure 5, we notice that the closest level-set might change, hence

enforcing the coupling conditions is not really desired.

Consequently, our iterative algorithm can split an edit into inter-

mediate ones by linearly interpolating between source and target

template parameters, then used as in Algorithm 1 of the main paper.

4 CONVERGENCE OF TRACKING UPDATES

Starting from E = E0, we de�ne a sequence of iterates E:+1 = E: +3:E ,

where 3: depends only on E0 and E: through Equation (8) of the

main paper. Using taylor expansion in Section 5.1.2 of the main

paper, we can show that,

(

∇5Θ′ (E:) + ∇5Θ′ (E:+1)

2

))

· 3: = 5E − 5Θ′ (E:) (1)

Using the update rule from Equation (8), the error accumulated for

the 0Cℎ order condition is quanti�ed as

5Θ′ (E:+1) − 5E =

(

∇5Θ′ (E:+1) − �E · 6E

2

)

3: (2)

Note that we are trying to quantify an error measure using only the

0Cℎ order condition from equation 4. Expanding, ∇5Θ′ (E:+1) further

till second order derivatives repeatedly,

5Θ′ (E:+1) − 5E =

(

∇5Θ′ (E0) − �E · 6E

2

)

3: +

:−1
∑

8=0

(38))∇2 5Θ′ (E8)3:−1

(3)

Observe that using the updates from Eq. 8 gives a lower order

error than simple �rst order updates such as: ∇5Θ′ (E:))3: = 5E −

5Θ′ (E:).

Also, ∇2 5Θ′ (E8) is closely related to the shape operator of the zero

contour set of 5Θ′ , and 38 tends to be in the null space of it leading

to low values of the summation terms in Equation (3). More-over

the error magnitudes of the summation terms are O(||3: | |2), where

as the �rst term captures the �rst order error magnitude. The value

5Θ′ (E:+1) − 5E =
(

∇5Θ′ (E
0)− �E ·6E
2

)

3: depends upon the similarity of

2

Semantic Shape Editing with Parametric Implicit Templates
Supplementary Material SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

No order-1 coupling

Input

Mesh

Θ
S

Θ
T

Edited Mesh

Ours

Fig. 6. We run the deformation for the same edit and same hyper-

parameters while disabling the order-1 coupling from Eq. 5 of the main

paper. We observe that when there is only a few number of sub-edit steps

taken, using only function value coupling from Eq. 4 of the main paper is

not su�icient in case of conflicting edits, as seen on the armrest of the couch

which collapses on itself.

∇5Θ′ (E0), �E ·6E and also the magnitude of 3: . Therefore, it is essen-

tial to keep the magnitude of 5Θ′ (E:+1) − 5E =

(

∇5Θ′ (E
0)− �E ·6E
2

)

3:

low particularly in the beginning steps when the magnitude of 3:

is large, which again suggests a quasi static edit approach.

In practice, we show the importance of gradient coupling in

Figure 6. We also observe faster convergence with grad coupling

than without.

5 IMPLEMENTATION DETAILS

5.1 Timings for fi�ing

Sampling volume points around the mesh takes between 2 and 5

seconds. While the time needed to �t a parametric template to a

given input mesh depends on its complexity, convergence is usually

obtained in between 2 and 4 seconds, for sets of samples from 50k

to 300k. Note that we use a non optimized single-threaded Pytorch

implementation for the �tting and expect signi�cant speedups with

a more e�cient implementation.

5.2 Evaluation

To generate our results, we run the �tting and deformation in batch

mode with no manual tuning of the parameters. The input meshes

are normalized to unit box to have a scale close to that of the initial

template con�guration.

For the comparison with Spaghetti [Hertz et al. 2022], we per-

formed the edits using the available UI and manual interaction with

the shapes, which can slightly di�er from the deformations we

produce.

5.3 Mesh deformation

The iterative mesh deformation is implemented as described in an

alternating local-global algorithm as described by Algorithm 1 of

the main paper. While the closed-form solutions for updating our

local maps �E given by Eqs. 13, 17 use pseudo-inverses of 3 × 3

matrices, we implement this using a set of local bases for reasons

of speed and robustness. We de�ne a source basis corresponding

to the source mesh M at every vertex E , �E and a target basis �′E
corresponding to the current iterate of the deformation M′. While

the source bases are computed once parallely for all the vertices

before the start of the iterations, the target bases are updated every

iteration after the global step using the normals from the global

step update. This approach reduces the matrix inversion to a simple

full rank 2 × 2 inverse, and all the local steps are parallelized. We

observe that this approach is faster and numerically more robust.

Depending on the speci�c use-case, we provide an option to turn

on regularization over the transformation matrices controlled by fB .

The solution to Eq. 16 can be computed by vectorizing �:E and using

Sylvester equation multiple times. We implement this in our system

ending up with 2 big Cholesky solves in every iteration, one during

the global step and one during the local (which isn’t local anymore).

On the other hand Eq. 17 can be parallelized and gives speed gains.

Depending on the exact scenario of use, if the number of iterations

:<0G are high enough, the local parallel approach gives similar

results to the exact solution involving the matrix solve. However if

a user is interested in a small edit but very smooth solution (de�ned

and controlled by the geometric weights F8 9), the global-global

option can be preferred.

For our results we use :<0G = 10 and number of sub-edit steps

=4 = 40. Depending on how large the edit is, we choose the number

of sub-edit steps with the default value 50. A local-global step for a

mesh with around 5k vertices takes 25ms (de�ne as C) on a Macbook

Pro with an M1 Max processor.

0

1

2

3

4

5

Update Step Norm

10987654321

Local-Global Iterations

x1e-5

Fig. 7. Variation of the norm of the update step 3(3E concatenated across

all E) over the local-global iterations : . The step norms at each iteration are

averaged across di�erent edit steps for a particular example deformation

scenario of doubling the width of a couch using 20 sub-edit steps.

So, depending on :<0G , each sub-edit step takes :<0G × C time,

and if there are =4 sub-edit steps, the total edit time amounts to a

time of =4 ×:<0G ×C . Note that the time of a sub-edit is independent

of =4 . Depending on how large each edit is, =4 needs to be increased

accordingly. In practice,:<0G can be as low as 2 as seen from Figure 7

In an interactive scenario where a slider is incrementally updated

by the drag operation of a user, each slide update can be treated as a

3

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Input

Mesh
Θ

S Θ
T

Edited

Mesh

Fig. 8. Editing with simple templates made of boxes. Templates of increasing

complexity provide control over the level of details of the deformation to

apply. They can easily be tailored to achieve an expected edit.

sub-edit which can be performed in :<0G × C time (which amounts

to ≈ 2 × 25 = 50ms) giving interactive speeds.

5.4 Parametric templates

Table 1 provides statistics for all parametric template presented in

this paper.

Graph Color # nodes # params

couch • 667 22

table • 137 11

mug • 595 14

vase • 877 20

airplane • 1015 17

car • 745 19

single box • 34 8

double box • 75 12

three boxes • 122 21

Table 1. Statistics for our procedural templates include the number of nodes

N and parameters ? for each model.

6 ADDITIONAL RESULTS

We present more results in addition to the ones shown in the main

paper.

7 PERCEPTUAL STUDY

In order to evaluate the perceptual quality of the results of our

method compared to those of related work, we conducted a user

study through a survey where respondents could choose between

two results. For each of the compared methods, a survey form shows

around 30 randomly picked editing instances where respondents

are asked to choose between one of the two results, or indicate that

Both or Neither results satisfy the edit.

Input

Mesh
Θ

S Θ
T

Edited

Mesh

Fig. 9. Applying semantic edits from implicit templates (second column)

onto 3D meshes (le�). Same colors of templates denote same template used.

Figure 11 shows the results of the study. consisting of 17 responses.

As we can see, respondents preferred our results over all three

compared methods. Against Neural Cages [Yifan et al. 2020], while

our results were mostly preferred, a decent amount of users chose

neither results, showing the di�culty of the task. Comparing against

Wei et al. [2020], while our results are not as clearly preferred as in

other cases, the evaluation instances provided by Wei et al. [2020]

do not contain large edits. Against Spaghetti [Hertz et al. 2022], our

results clearly outpeform the method, which shows that generative

methodologies cannot faithfully reproduce input shapes.

REFERENCES
Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. 2020. Segment tracing using

local Lipschitz bounds. In Computer Graphics Forum, Vol. 39. Wiley Online Library,
545–554.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2022.
Spaghetti: Editing implicit shapes through part aware generation. ACM Transactions

4

Semantic Shape Editing with Parametric Implicit Templates
Supplementary Material SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Ours

Θ
S

Θ
T

[Wei et al.

2020]

Input

Mesh

Ours

Θ
T

[Wei et al.

2020]

Fig. 12. Comparison to the deformation-based approach of Wei et al. [2020].

Our specific deformation formulation be�er preserves geometric details, in

addition to allowing smooth large scale edits. Note that in this case, we are

using the couch template which is able to represent chairs as well.

OursΘ
S Θ

T

Input

Mesh
Spaghetti

Fig. 13. Comparison to the generated results of Spaghe�i [Hertz et al. 2022]

on samples from their test set. The learned nature of their approach limits

expressivity of the model, in particular for large scale edits such as tilting

the back. In addition, non edited parts are not well preserved.

Source

Mesh

Target

Mesh
Ours

Neural

Cages

N/A

5

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

OursΘ
S Θ

T

Input

Mesh
Spaghetti

Fig. 14. Comparison to the generated result of Spaghe�i [Hertz et al. 2022]

on new samples. The limited resolution and generalization capability of the

neural model damages geometric details and specificities of the input, and

prevents generating meaningful or usable edited shapes.

0 20 40 60 80 100

NeitherOtherBothOurs

Spaghetti

Neural

Cages

Wei et al.

2020

Fig. 11. Results of perceptual study: The G-axis indicates the percentage of a

choice across instances averaged across responses. For each comparison, we

had around 30 instances answered by 17 users. The results of our approach

have been consistently preferred by respondents over all three compared

methods.

on Graphics (TOG) 41, 4 (2022), 1–20. https://doi.org/10.1145/3528223.3530084
Inigo Quilez and Pol Jeremias. 2013. Shadertoy. Retrieved May 23, 2023 from https:

//shadertoy.com
Fangyin Wei, Elena Sizikova, Avneesh Sud, Szymon Rusinkiewicz, and Thomas

Funkhouser. 2020. Learning to infer semantic parameters for 3D shape edit-
ing. In 2020 International Conference on 3D Vision (3DV). IEEE, 434–442. https:
//doi.org/10.1109/3DV50981.2020.00053

Wang Yifan, NoamAigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-
Hornung. 2020. Neural cages for detail-preserving 3d deformations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 75–83.
https://doi.org/10.1109/CVPR42600.2020.00015

6

https://doi.org/10.1145/3528223.3530084
https://shadertoy.com
https://shadertoy.com
https://doi.org/10.1109/3DV50981.2020.00053
https://doi.org/10.1109/3DV50981.2020.00053
https://doi.org/10.1109/CVPR42600.2020.00015

	1 Our Parametric Implicit Templates
	1.1 Template Design

	2 Fitting to modulated target
	3 Motivation for progressive tracking
	4 Convergence of Tracking Updates
	5 Implementation Details
	5.1 Timings for fitting
	5.2 Evaluation
	5.3 Mesh deformation
	5.4 Parametric templates

	6 Additional results
	7 Perceptual study
	References

