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This document provides additional technical details regarding our process for calculating gradients for
the preservation energy term F , optimization objective non-dimensionalization, and bound constraints guar-
antees on the parts. We also show the sets of designs we used for the experiments in the main paper.

1 Preservation Energy Optimization

Our preservation energy F(x, r) is defined for a physical system with rest variables r and simulation variables
x as the sum of a target fitting term T (x) and an elastic energy term E(x, r). We aim to efficiently
compute the gradient of the preservation energy with respect to the design variables d (composed of rest
variables and Dirichlet constraint values) when evaluated at the equilibrium state x∗(d) i.e., the gradient of
F̃(d) := F(x∗(d), r).

1.1 Equilibrium Sensitivities

This term is only evaluated at the equilibrium state x∗(d) defined as We split the design variables into rest
quantities e.g., beam rest lengths, and fixed deformed variables e.g., corner angles, as d = [r⊤v , r

⊤
f ]

⊤.

x∗(d) := argmin
x

Ē(x, rv) (A1)

s.t. xf = rf ,

where Ē(x, rv) = E(x, rv) + D(x) is the total energy of the system, D(x) models the external deployment
forces, and xf are the simulation variables fixed by the Dirichlet constraints rf . We express the first-order
KKT conditions for the equilibrium state as
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where λ is the Lagrange multiplier associated with the Dirichlet constraints. We further split the simulation
variables into free and fixed components as x = [x⊤

v ,x
⊤
f ]

⊤. We may remark that
∂xf

∂x
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matrix with blocks of zeros and identity matrices, and we differentiate the equilibrium state with respect to
the design variables d as
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where I is the identity matrix, and Hv is the Hessian of the total energy with respect to the free simulation
variables xv evaluated at the equilibrium state. The sensitivity of the equilibrium state δx∗ to some design
variable perturbation δd can be computed as
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Computing the second order perturbation of the equilibrium state given a perturbation of the design
variables δd is done by solving the following linear system

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1.2 Gradients

Using the chain rule, we can compute the gradient of the preservation energy with respect to the design
variables as
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We consequently define the adjoint state vector w as

Hvw =
∂F

∂xv

⊤

,

where the gradient of the preservation energy can be computed analytically from the own physical system’s
inverse design optimization pipeline. The gradient of F̃ can thus be computed efficiently using the adjoint
state vector w as
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1.3 Hessian Vector Products

The Hessian Vector Product (HVP) of the preservation energy given a perturbation of the design variables
δd can be computed as
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where δw is the adjoint state vector perturbation, and satisfies the linear system
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Figure 1: Conformals Set.

2 Non-Dimensionalization of the Preservation Energy

Our preservation energy F is the sum of the elastic energy of a deformed system E and a target fitting term
T . We non-dimensionalize the elastic energy by scaling it with the Young’s modulus Y of the fabrication
material times the rest volume V0 of the system. The bending, twisting, and stretching energies stored in
the rods of a system can be derived by plugging strain tensor fields ϵ induced these deformation modes into
the linear elasticity energy 1

2

∫

Ω
ϵ : C : ϵ, where C is the fabrication material’s elasticity tensor. For an

isotropic material, C = YC0(ν), where C0(ν) depends only on the Poisson’s ratio ν; for example C0(0) is
the fourth-order identity tensor. Since strain ϵ is non-dimensional, this elastic energy clearly is proportional
to Y V0. The target fitting term is non-dimensionalized by dividing it by the square of the bounding box
diagonal of the target surface.

3 Bound Constraints Guarantees

Parts within a kit of parts may have to satisfy certain shared fabrication constraints e.g., minimum distance
between corners and joints for linear elements of rationalized Orthogonal Grids and C-shells. We assume
that such constraints can be expressed as bound constraints on the parts parameters, so that a part i must
satisfy pmin ≤ pi ≤ pmax. We aim to show that any part pi obtained from the optimal elements q∗ using
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Figure 2: Umbrella Meshes Set.

the update rule

pi(q
∗) := argmin

y

∑

j∈c−1({i})

ρ(y,q∗
j ), (A2)

is guaranteed to satisfy the original feasibility constraints for any assignment c, provided that elements are
bound during the optimization process, for the ρ we use in our work.

We impose that elements are bound by the same constraints as the parts, so that pmin ≤ qj ≤ pmax for
any element j. Under the appropriate symmetry transformations (mirroring), our projection energy ρ is a
squared L2 distance. The solution to the update rule pi(q

∗) is given by the average of the elements assigned
to the part. Therefore, the part belongs to the convex hull formed by the elements assigned to it, which
itself is included in the axis-aligned bounding box formed by the corners pmin and pmax. The part pi(q

∗)
is thus guaranteed to satisfy the original feasibility constraints. Note that unassigned parts can trivially be
set to the mean of the corners pmin and pmax by default.

4 Datasets

We now show the sets of designs we used for the experiments in the main paper.

4.1 Conformals

The 10 designs of the Conformals dataset shown in Figure 1 are obtained following the methodology presented
in Becker et al. (2024). The designs are conformal deformations of a base grid with an annulus (8 and 10)
or a regular (the others) topology. Layout variations are obtained by applying a conformal map defined by
a boundary a user can manipulate as presented in Eck et al. (1995) and Sawhney and Crane (2017). The
target surface is extracted by smoothly interpolating the joints of the deployed C-shell.

We reuse the same surfaces for the orthogonal grids. They are initialized by either tracing uv-isolines
on the target surface and converting them into piecewise straight beams or by connecting the projections of
the joints on the surface using piecewise straight beams. The designs are further optimized to better fit the
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target surface using an inverse design optimization algorithm similar to the one presented in Becker et al.
(2023).

4.2 Umbrella Meshes

The 6 designs of the Umbrella Meshes dataset shown in Figure 2 are obtained from known shapes that have
been approximated thanks to the inverse design optimization pipeline presented in Ren et al. (2022). The
structure topologies i.e., the number of cells and their connectivity, are allowed to vary across experiments.
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